Compact finite difference method for integro-differential equations
نویسندگان
چکیده
In this paper, we give sixth order compact finite difference formula for second order integro-differential equations (IDE) with different boundary conditions, and both of error estimates and numerical experiments confirm our compact finite difference method can get fifth order of accuracy. We also adjust compact finite difference method for first order IDE and a system of IDE and give numerical experiments for them. Our algorithm even can solve nonlinear IDE and unsplit kernel of IDE. The most advantages of compact finite difference method for IDE are that it obtains high order of accuracy, while the time complexity to solve the matrix equations after we use compact finite difference method on IDE is O(N), and it can solve very general case of IDE.
منابع مشابه
A Compact Scheme for a Partial Integro-Differential Equation with Weakly Singular Kernel
Compact finite difference scheme is applied for a partial integro-differential equation with a weakly singular kernel. The product trapezoidal method is applied for discretization of the integral term. The order of accuracy in space and time is , where . Stability and convergence in norm are discussed through energy method. Numerical examples are provided to confirm the theoretical prediction ...
متن کاملCompact finite difference methods for high order integro-differential equations
High order integro-differential equations (IDE), especially nonlinear, are usually difficult to solve even for approximate solutions. In this paper, we give a high accurate compact finite difference method to efficiently solve integro-differential equations, including high order and nonlinear problems. By numerical experiments, we show that compact finite difference method of integro-differenti...
متن کاملNON-STANDARD FINITE DIFFERENCE METHOD FOR NUMERICAL SOLUTION OF SECOND ORDER LINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
In this article we have considered a non-standard finite difference method for the solution of second order Fredholm integro differential equation type initial value problems. The non-standard finite difference method and the composite trapezoidal quadrature method is used to transform the Fredholm integro-differential equation into a system of equations. We have also developed a numerical met...
متن کاملFinite difference method for solving partial integro-differential equations
In this paper, we have introduced a new method for solving a class of the partial integro-differential equation with the singular kernel by using the finite difference method. First, we employing an algorithm for solving the problem based on the Crank-Nicholson scheme with given conditions. Furthermore, we discrete the singular integral for solving of the problem. Also, the numerical results ob...
متن کاملCompact Finite Difference Schemes for Solving a Class of Weakly- Singular Partial Integro-differential Equations
: : In this paper, we present a new approach to resolve linear weakly-singular partial integro-differential equations by first removing the singularity using Taylor's approximation and transform the given partial integrodifferential equations into an partial differential equation. After that the fourth order compact finite difference scheme and collocation method is presented to obtain system o...
متن کاملA finite difference technique for solving variable-order fractional integro-differential equations
In this article, we use a finite difference technique to solve variable-order fractional integro-differential equations (VOFIDEs, for short). In these equations, the variable-order fractional integration(VOFI) and variable-order fractional derivative (VOFD) are described in the Riemann-Liouville's and Caputo's sense,respectively. Numerical experiments, consisting of two exam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 177 شماره
صفحات -
تاریخ انتشار 2006